180.
第3回 SGLT2阻害薬Key PointsSGLT2阻害薬 栄光の軌跡1)リンゴとSGLT2阻害薬の甘い関係?2)SGLT2阻害薬のエビデンス、作用機序は?3)最も注意すべき副作用は?はじめにSGLTとは、sodium glucose co-transporter(ナトリウム・グルコース共役輸送体)の略であり、ナトリウムイオン(Na+)の細胞内外の濃度差を利用してNa+と糖(グルコース)を同時に細胞内に取り込む役割を担っているトランスポーターである1)。このSGLTにはSGLT1-6のアイソフォームがあり2)、その1つであるSGLT2の活性を阻害するのがSGLT2阻害薬である。SGLT2は、ほぼすべてが腎臓の近位尿細管起始部の管腔側に選択的に発現しており、Na+とグルコースを1:1の割合で共輸送することで、尿糖再吸収のおよそ90%を担っている(残りの10%はSGLT1を介して再吸収)1)。このように、SGLT2阻害薬は、近位尿細管でのグルコース再吸収を阻害し、尿糖の排泄を増やすことから、血糖を下げ、糖毒性を軽減し、糖尿病の病態を改善させる薬剤として当初開発された。しかし現在、この薬は心不全治療薬として脚光を浴びている。本稿ではその栄光の軌跡、エビデンス、作用機序について考えていきたい。1. リンゴとSGLT2阻害薬の甘い関係SGLT2阻害薬はどのようにしてこの世に生まれたのか。そこには日本人研究者が重要な役割を担っていた。SGLT2阻害薬のリード化合物であるフロリジン(ポリフェノールの一種)は、1835年にピーターセン氏(フランス)によって『リンゴの樹皮』から抽出された。その約50年後にフォンメリング氏(ドイツ)によってフロリジンの尿糖排泄促進作用が報告された(Von Mering, J. "Über künstlichen diabetes." Centralbl Med Wiss 22 (1886):531.)。そこから約100年の時を経て、糖尿病モデル動物でのフロリジンの抗糖尿病効果(インスリン作用を介さない血糖降下作用、インスリン抵抗性改善、インスリン分泌能回復)が証明された。また時を同じくして1987年に小腸からSGLT1が発見され、フロリジンがその阻害薬であることが報告された3)。その7年後(1994年)に腎臓からSGLT1と類似した構造を持つSGLT2が同定され4)、創薬に向けた研究が進んでいった。そして1999年ついに田辺製薬(当時)より世界初の経口フロリジン誘導体(T-1095)の糖尿病モデル動物に対する糖尿病治療効果が報告された5)。ただ、フロリジンは小腸にも存在するSGLT1をも阻害するため、下痢等の消化器症状を引き起こす恐れがある6)。こうして誕生したのが現在の“選択的”SGLT2阻害薬であり、『糖を尿に出して糖尿病を治す(turning symptoms into therapy)』という逆転の発想から生まれた実にユニークな薬剤なのである7)。2. SGLT2阻害薬のエビデンスと作用機序1)SGLT2阻害薬のエビデンス 現在・過去・未来上記のとおり、SGLT2阻害薬は当初糖尿病治療薬として開発されたため、有効性を検証するためにまず行われた大規模臨床試験は2型糖尿病患者を対象としたものであった(図1)。最初に実施された心血管アウトカム試験が2015年に発表されたエンパグリフロジンを用いたEMPA-REG OUTCOME[対象:心血管疾患既往の2型糖尿病患者7,020名(二次予防)]であり、その結果は誰も予想しえなかった衝撃的なものであった。まず、主要エンドポイントである3P-MACE(心血管死、非致死的心筋梗塞、または非致死的脳卒中の心血管複合エンドポイント)の相対リスクを、エンパグリフロジンがプラセボとの比較で14%有意に減少させ、これは3P-MACEを主要エンドポイントとする2型糖尿病を対象にした試験の中で、初めての快挙であった。その中でもとくに心血管死のリスクを38%減少させ、また心不全入院のリスクも35%減少させることも分かり、さらなるインパクトを与えた。その後同様に、CANVAS試験(2017年)ではカナグリフロジンが、DECLARE-TIMI 58試験(2019年)ではダパグリフロジンが、心血管イベントハイリスクの2型糖尿病患者(一次予防含む)の心血管イベントを減少させるという結果が報告された。つまり、『どうやらSGLT2阻害薬には心保護作用がありそうだ。ただこれらの試験の対象患者の多くは心不全を合併していない糖尿病患者であり、心不全患者を対象とした試験でしっかり検証すべきだ』という流れになったわけである(図1、図2)。画像を拡大する画像を拡大するこのような背景から、まずHFrEF(LVEF≦40%)に対するSGLT2阻害薬の心血管イベント抑制効果を検証するために、ダパグリフロジンを用いたDAPA-HF試験とエンパグリフロジンを用いたEMPEROR-Reduced試験が実施された(図1)。結果は、両試験ともに、標準治療へのSGLT2阻害薬の追加が、糖尿病の有無にかかわらず、心血管死または心不全入院のリスクを26%有意に低下させることが示され8)、さらなる衝撃が走った。そうなると、次に気になるのが、もちろんLVEF>40%の慢性心不全ではどうか、ということであろう。その疑問について検証した試験が、エンパグリフロジンを用いたEMPEROR-Preserved試験とダパグリフロジンを用いたDELIVER試験である(図1)。まず初めに結果が発表されたのが、EMPEROR-Preserved試験で、エンパグリフロジンを心不全に対する推奨療法を受けている患者(LVEF>40%)に追加した結果、心血管死または心不全入院の初回発現がプラセボ群と比較して21%有意に低下していた9)。この効果はLVEF≧50%の症例でも同様であった。この結果をもって、最新の米国心不全診療ガイドラインではHFpEFへのSGLT2阻害薬の投与がClass 2aの推奨となった10)。そして、最近DELIVER試験の結果も発表され、ダパグリフロジンは、LVEF>40%の慢性心不全患者の心血管死または心不全悪化(心不全入院+緊急受診)のリスクを18%有意に抑制させた11)。よって、2つのRCTでHFpEFに対するポジティブな結果が出たため、今後のガイドラインでは、EFに関わらず慢性心不全へのSGLT2阻害薬の投与がClass 1へ格上げされる可能性が高い12)。ただし、これらの試験は、NT-proBNPが上昇しているHFpEF(洞調律では300pg/mL、心房細動では600pg/mL以上)が対象であり、運動負荷検査をして初めてHFpEFと診断されるNT-proBNPがまだ上昇していない症例は含まれておらず、すべてのHFpEFでこの薬剤が有効かどうかは不明である。そして、今後も虚血領域、腎不全領域などで数多くのエビデンスが出てくる予定であり、この薬剤の効果がどこまで広がるのか、引き続き目が離せない(図3)。画像を拡大する2)SGLT2阻害薬はなぜ心不全に有効なのか?SGLT2阻害薬がなぜ心不全に有効なのか。そして今回の本題ではないが、SGLT2阻害薬には腎保護作用もあり、そのような心腎保護作用のメカニズムは何なのか。図4で示したとおり、さまざまなメカニズムが提唱されているが、どれがメインなのかは分かっておらず、それが真実なのかもしれない。つまり、これらのさまざまな心腎保護へ働くメカニズムが複合的に絡み合っての結果であると考えられる。個人的にはこの薬剤の心不全への効果は、腎臓への良い効果が主な理由と考えており、熱く語りたいところではあるが、字数足りずまたの機会とさせていただく。ただ、これは今も議論のつきないテーマであり、今後より詳細なメカニズムの解明が進んでいくものと期待される。画像を拡大する3. 最も注意すべき副作用、それは…注意すべき副作用は、正常血糖ケトアシドーシス(Euglycemic DKA)、尿路感染症、脱水である。とくにケトアシドーシスはかなり稀な副作用(DAPA-HF試験における発現率は、糖尿病患者で0.3%、非糖尿病患者では0%)ではあるが、見逃されると予後に関わることもあり、どのような患者でとくに注意すべきか把握しておかれると良い。まず、日常診療で最も起こりうる状況は、非心臓手術の前にSGLT2阻害薬が継続投与されていた時であろう(そのメカニズムは図5を参照)。術後のケトアシドーシスや尿路感染症のリスクを最小限に抑えるために、手術の少なくとも3日前からのSGLT2阻害薬の中止が推奨されていることはぜひ覚えておいていただきたい13)。また、著明なインスリン分泌低下を認める症例(インスリン長期治療を受けているなど)にも注意が必要であり、体重減少の有無や過度な糖質制限をしていないかなどしっかり確認しておこう。血糖値正常に騙されず、ケトアシドーシスを疑った場合は、速やかに血液ガス分析にてpH低下やアニオンギャップ増加がないかを確認するとともに、血清ケトン濃度を測定し,鑑別を行う必要がある。なお、日本糖尿病学会からその他の副作用も含め『SGLT2阻害薬の適正使用に関するRecommendation」14)が公表されており、ぜひ一読をお勧めしたい。このような副作用もしっかり理解した上で、心不全患者さんを診られた際は、これほどのエビデンスがあるSGLT2阻害薬が投与されているか、されていなければなぜ投与されていないか、を必ず確認いただきたい。画像を拡大する1)Ferrannini E, et al. Nat Rev Endocrinol. 2012;8:495-502.2)Wright EM, et al. Physiol Rev. 2011;91:733-94.3)Hediger MA, et al. Nature. 1987;330:379-81.4)Kanai Y, et al. J Clin Invest. 1994;93:397-404.5)Oku A, et al. Diabetes. 1999;48:1794-800.6)Gerich JE. Diabet Med. 2010;27:136-42.7)Diamant M, Morsink LM. Lancet. 2013;38:917-8.8)Zannad F, et al. Lancet. 2020;396:819-829.9)Anker SD, et al. N Engl J Med. 2021;385:1451-1461.10)Heidenreich PA, et al. Circulation. 2022 May 3;145:e895-e1032.11)Solomon SD, et al. N Engl J Med. 2022;387:1089-1098.12)Vaduganathan M, et al. Lancet. 2022;400:757-767.13)FDA Drug Safety Communication. FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections.14)日本糖尿病学会. 糖尿病治療におけるSGLT2阻害薬の適正使用に関する Recommendation